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Simultaneous diffusive and inertial motion of Brownian particles in laminar Couette flow is investigated via
Lagrangian and Eulerian descriptions to determine the effect of particle inertia on diffusive transport in the
long-time limit. The classical fluctuation dissipation theorem is used to calculate the amplitude of random-force
correlations, thereby neglecting corrections of the order of the molecular relaxation time to the inverse shear
rate. In the diffusive limitstime much greater than the particle relaxation timed the fluctuating particle-velocity
autocorrelations functions are found to be stationary in time, the correlation in the streamwise direction being
an exponential multiplied by an algebraic function and the cross correlation nonsymmetric in the time differ-
ence. The analytic, nonperturbative, evaluation of the particle-phase total pressure, which is calculated to be
second order in the Stokes numbersa dimensionless measure of particle inertiad, shows that the particle phase
behaves as a non-Newtonian fluid. The generalized Smoluchowski convective-diffusion equation, determined
analytically from a combination of the particle-phase pressure tensor and the inertial acceleration term, con-
tains a shear-dependent cross derivative term and an additional term along the streamwise direction, quadratic
in the particle Stokes number. The long-time diffusion coefficients associated with the particle flux relative to
the carrier flow are found to depend on particle inertia such that the streamwise diffusion coefficient becomes
negative with increasing Stokes number, whereas one of the cross coefficients is always negative. The total
diffusion coefficients measuring the rate of change of particle mean-square displacement are always positive as
expected from general stability arguments.
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I. INTRODUCTION

Combined inertial and diffusive motion of Brownian par-
ticles in a flowing fluid is important in a number of aerosol
processes, including filtration, aerosol sampling, deposition
in bends, and particulate deposition in the human respiratory
tract. The limit of negligible inertial effects, where the par-
ticles follow closely the motion of the fluid, has been exten-
sively studied in sheared colloidal suspensionsf1,2g. These
two-phase systems, which consist of a dispersed particulate
phase and a continuous fluid phasesgas for aerosolsd, have
long been of interest for their important industrial and engi-
neering applications. Pure diffusive particle motion is usually
described by a convective gradient-diffusion equation from
which inertial effects are absent. The limit of inertial trans-
port, where diffusion is neglected and particle trajectories
deviate significantly from the fluid stream lines, is most con-
veniently described in terms of the particle equations of mo-
tion in a Lagrangian formulation. In the transition regime
between the diffusion limit and the inertia-dominated limit
the two particle-transport mechanisms have to be considered
simultaneously.

The effect of particle inertia on the diffusive motion of
noninteracting Brownian particles in nonuniform fluids has
been examined via numerous approaches. Continuum de-
scriptions in terms of mass and momentum conservation

equationssmacroscopic “hydrodynamic” equationsd require
constitutive relations for the particle-phase total pressure ten-
sor. A frequently made approximation is to consider the
Brownian particles as an “ideal gas,” thereby using a phe-
nomenological expression for the particle-phase pressure ten-
sor f3,4g.

Mesoscopic descriptions of Brownian motion involve sto-
chastic particle equations of motion and the associated
Fokker-Planck equation, as, for example, in Subramanian
and Bradyf5g where a multiple-scale analysis of the Fokker-
Planck equation in a simple shear flow is presented. In me-
soscopic descriptions in terms of Langevin equations the
fluctuation dissipation theoremsFDTd is an essential ingre-
dient of the calculation. Santamaría-Holeket al. f6g used an
alternative approach by considering the motion of a
Brownian-particle in an external flow field as an example of
a driven, far-from-equilibrium system. They used mesos-
copic nonequilibrium thermodynamics, an approach that
does not require the specification of the stochastic properties
of the random force, to obtain the Fokker-Planck equation
for the nonequilibrium Brownian particle distribution func-
tion in a simple shear flow. They found that the diffusion
tensor in the Fokker-Planck equation depends on the shear
rate, concluding that fluctuations about the nonequilibrium
steady state lead to a violation of the classicalsequilibriumd
FDT.

Kinetic theory has also been used to obtain the Fokker-
Planck equation for the motion of Brownian particles in rar-
efied nonuniform gases. Fernández de la Mora and Mercer
f7g expanded the Boltzmann collision operator in the ratio of
the light-gas molecular mass to the Brownian-particle mass;
they approximated the light-gas distribution function by the
first two terms in the Chapman-Enskog expansion to derive a
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Fokker-Planck equation whose diffusion tensor was found
independent of light-gas velocity gradientsf7g. However,
Rodrígezet al. f8g, using a similar low-mass-ratio expansion
of the collision operator for Maxwellian fluid molecules, ob-
tained a Fokker-Planck equation in a uniform shear flow with
a diffusion tensor that depended on the irreversible fluid
stress tensor.

Herein, we consider a dilute suspension of noninteracting
Brownian particles in a two-dimensional, simple shearslami-
nar, plane Couette flowd. Inertial Brownian particles are con-
sidered: namely, particles whose Stokes numbersthe ratio of
the particle relaxation time to the inverse shear rate, or more
properly strain rate, a dimensionless number that describes
particle response to spatial changes in the carrier flow veloc-
ityd is finite sat least of order unityd. The limit of small
Stokes number corresponds to pure diffusive motion,
whereas for large Stokes numbers inertial transport domi-
nates. A mesoscopic approach is adopted, whereby both La-
grangian and Eulerian descriptions are presented to investi-
gate the effect of particle inertia on the convective-diffusion
equationsequivalently, the Smoluchowski equationd in the
long-time, diffusive limit. The classical FDT is used since we
argue that the modification of the classical FDT derived in
Refs.f6,8g is of the order of the ratio of the molecularsfluidd
relaxation timesa molecular time scaled to the inverse shear
rate sa macroscopic time scaled and thus negligible for typi-
cal shear rates.

A linear flow field was chosen as the underlying carrier-
gas velocity field because the stochastic particle equations of
motion and the associated Fokker-Planck equation can be
solved exactly for linear flow fields. Thus, the closure prob-
lem associated with the continuum equations for the dis-
persed phase is avoided, and analytic, nonperturbative ex-
pressions may be derived in the long-time limitsfor example,
for the mean particle velocityd. The specific case of a simple
shear is investigated because Brownian motion in a simple
shear has been studied extensively; see, for example, Refs.
f5,6,8,9g. These analyses have been limited in either pertur-
bative calculationsf5,6g or in calculations of the long-time
behavior of equal-time correlation functions without consid-
erations of the associated convective-diffusion equationf9g.
The long-time, analytic expressions obtained herein extend
these previous analysessunder well-specified approxima-
tionsd: for example, the nonperturbative, generalized Smolu-
chowski equation for diffusing, inertial Brownian particles in
a simple shear is derivedssee Ref.f5gd, and analytic expres-
sions for the particle-phase total pressure tensor and the dif-
fusion tensor are obtainedssee Ref.f6gd. Moreover, the
methodology presented for a simple shear may be used to
investigate Brownian motion of finite-inertia particle in any
other linear two-dimensional flow, be it a symmetric or anti-
symmetricsrotationald shear.

Our approach has much in common with the so-called
PDF approach used to describe particle dispersion in inho-
mogeneous turbulent flowsf10g. Moreover, a Langevin equa-
tion formally equivalent to the one used in this work has also
been used to model turbulencef11g by considering an anal-
ogy between the action of the dissipating scales of turbulence
and that of the molecular white noise driving force in
Brownian motion. Hence, the results obtained herein apply

mutatis mutandisfor turbulent dispersion in a simple shear
with the proviso that FDT is not a property of the turbulent
motion. Similarly, a Langevin equation equivalent to the one
presented in this work for the fluctuating Brownian particle
velocities has also been used to describe the effect of shear
on fluid velocity fluctuationsf12g. In the identification of
similarities and differences between Brownian-particle mo-
tion and fluid-point motion the Stokes number used in this
work corresponds to the dimensionless ratio of the fluid time
scale to the inverse shear rate.

The Lagrangian description is presented in Sec. II where
the Brownian-particle velocity autocorrelation functions are
derived. Section III contains the Eulerian description and the
analytic solution of the Fokker-Planck equation. The analytic
expression for the total particle-phase pressure tensor as a
function of the Stokes number is derived. The generalized
Smoluchowski equation is calculated in Sec. IV, as well as
the Green-Kubo expressions for the diffusion coefficients.
The conclusions are summarized in Sec. V, whereas technical
details are presented in the Appendix.

II. LAGRANGIAN DESCRIPTION

Consider, thus, a Brownian particle of massm in a two-
dimensional unbounded laminar, plane Couette shear flow—
namely, a simple shear flow with the fluid velocityu along
the y direction,u=aIx; the shear rate1 tensoraI has only one
nonzero elementaxy=a. The general equation of motion for
a small rigid sphere in a nonuniform flowf13g simplifies
considerably for most incompressible gas-particle systems
because particle density is much greater than fluid density.
Accordingly, the pressure gradient force, virtual mass, Basset
history integral, and Faxen’s modification to Stokes’ drag
may be neglected. Moreover, the effect of gravity will be
neglected since gravitational settling becomes significant
only for very large particlessrp@50 mmd. The Saffman lift
force will also be neglected, it being negligible with respect
to Stokes drag for small-diameter, low-inertia particles.
Therefore, the particle equations of motion in a Lagrangian
description become

dv
dt

= bsaIx − vd + fstd, s1d

where the time derivative is a total derivative following the
moving Brownian particle withvstd the particle velocity,xstd
the particle position, andfstd the random force per unit par-
ticle mass. As argued, the friction force is assumed to be the
Stokes drag on the particle. Hence, the friction coefficientb
is the inverse particle relaxation time,b=1/tp
=9m f / s2rprp

2d, the particle relaxation time beingtp, the par-
ticle material densityrp, the particle radiusrp, and the fluid
dynamic viscositym f. As in the Langevin description of
Brownian motion in a quiescent fluid the random force will
be taken to be white in time,

1Strictly speakinga is the strain rate, but we will follow the
standard practice of referring to it as the shear rate.
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kf istdf jst8dl = qdi jdst − t8d si, j = x,yd, s2d

with zero meankf istdl=0 and of an unspecified, at the mo-
ment, strengthq. Angular bracketsk·l denote an ensemble
average over all particle trajectories.

The Langevin equations are linear: hence, the particle ve-
locity and position may be solved formally as functionals of
the random force. The formal solutions for Brownian par-
ticles injected at the origin with zero initial velocitysthe
choice of the initial conditions is not important since we are
interested in the long-time behaviord are

vxstd = e−btE
0

t

dt1e
bt1fbayst1d + fxst1dg, xstd =E

0

t

dt1vxst1d,

s3ad

vystd = e−btE
0

t

dt1e
bt1fyst1d, ystd =E

0

t

dt1vyst1d. s3bd

The formal solution allows the analytic evaluation of en-
semble averages of products of particle position and velocity,
two-point correlation functions, in terms of the random-force
strengthq. Their evaluation requires the calculation of time
integrals whose integrands include the causal correlation

kystdfyst8dl = ust − t8d
q

b
f1 − e−bst−t8dg. s4d

The Heavisideu function in the previous equation arises
naturally via the explicit evaluation of the time-dependent
correlation function using Eqs.s3bd; it ensures causality.

In the diffusive limit st@b−1d exponential terms in the
equal-time, two-point correlation functions may be ne-
glected. If only polynomial terms in time are kept, the cor-
relations evaluate to

kxstdxstdl =
q

2b212t −
3

b
+ a2F2

3
t3 −

4t2

b
+

8t

b2 −
3

2b3G aFt2 −
4t

b
+

11

2b2G
aFt2 −

4t

b
+

11

2b2G 2t −
3

b
2 , s5ad

kvstdxstdl =
q

2b21a2Ft2 −
4t

b
+

4

b2G + 1 aF2t −
9

2b
G

a

2b
1 2 ,

s5bd

kvstdvstdl =
q

2b1
2a2

b
Ft −

11

4b
G + 1

a

2b

a

2b
1 2 . s5cd

In a quiescent fluid the fluctuation strength is specified by
invoking the fluctuation-dissipation theorem. Its classical
form may be expressed asssee, for example, Reeksf14gd

bdi j =
m

kBT
E

0

`

dskf issdf js0dl. s6d

The use of the classical FDT in sheared systems has been
questioned. Whereas its classical form as shown in Eq.s6d
has been used in the pastf5,9,15g, it has also been argued
f16g that the fluctuation strength may be determined by the
ad hocrequirement that energy equipartition hold in the lo-
cal, comoving reference frame. Energy equipartition in the
local reference frame implies local equilibrium and hence the
Brownian velocity distribution function becomes locally
Maxwellian. As we show in Sec. III, if the Brownian velocity

distribution function is a local Maxwellian distribution, then
the Brownian particles behave as an ideal “particle” gas with
no shear stresses or shear viscosity.

More recently, Santamaría-Holeket al. f6g derived a
Fokker-Planck equation for the nonequilibrium distribution
function of Brownian particles in stationary flow. They
avoided the use of a Langevin equationsand the associated
problem of the specification of the statistics of the random
forced by using arguments based on mesoscopic nonequilib-
rium thermodynamics. They found that the flow modifies the
diffusion tensor in the Fokker-Planck equation by a term
proportional to the imposed velocity gradient. They con-
cluded that due to this additional term the fluctuation-
dissipation theorem in its classical form does not hold for
fluctuations about the nonequilibrium steady state. However,
they did not provide an estimate of the relative magnitude of
the nonequilibrium correction to the classical FDT.2 Such an
estimate may be deduced from earlier kinetic theory calcula-
tions of particle motion in a nonuniform light gas. Rodríguez
et al. f8g used Fokker-Planck and Langevin descriptions of
fluctuations in uniform shear flow to conclude that the diffu-
sion tensor in the Fokker-Planck equation and the corre-
sponding properties of the random force in the Langevin

2The estimate provided in Ref.f27g refers to the complete modi-
fication of the diffusion coefficient due to the shear under condi-
tions relevant to nucleation experimentsslaminar flow diffusion
cloud chamberd and not to the relative magnitude of the
equilibrium-to-nonequilibrium terms.
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description are modified by a term proportional to the trace-
less part of the fluid pressure tensor. Thus, the nonequilib-
rium modification of the FDT implies that in a Langevin
description the stochastic properties of the random force are
modified by the shear flow. However, in a Langevin descrip-
tion the time scale of the Brownian white noise driving force
is considered much shorter than the time scale of the im-
posed flow, suggesting that the nonequilibrium correction
would be of the order of the ratio of the molecular relaxation
time to the time scale of the imposed shear.3 In fact, the
nonequilibrium correction derived by Rodríguezet al. f8g
can be shown to be proportional to the ratio of the fluid
molecular relaxation time to the time scale of the imposed
shearsa ratio of a microscopic to a macroscopic time scaled
by expressing thesdimensionlessd correction in terms of the
velocity gradientsshear rated and the ratio of the fluid vis-
cosity to the fluid pressure. Similarly, Fernández de la Mora
and Mercerf7g used a Chapman-Enskog expansion of the
light-gas velocity distribution function to show that the non-
equilibrium modification of the Fokker-Planck equation is of
the order of the ratio of the light-gas relaxation timest f

,m f /pfd to the macroscopic fluid deceleration timesthe in-
verse shear rated. Thus, it becomes of the order of the light-
gas Knudsen number and therefore it may be neglected, only
becoming important for rarefied gasesf7g. Since in this work
we are interested in cases where time scales are clearly sepa-
rated, in what follows we shall use the classical form of the
FDT that does not introduce additional random-force corre-
lations.

The classical form of the FDT and Eq.s2d specify the
fluctuation amplitude to be

q

2b
=

kBT

m
. s7d

With this identification some of Eq.s5d have been previously
reportedf9g, whereas the full time-dependent correlations for
d-function initial conditions are given in Ref.f5g. Particle
velocity correlations along they direction sin the long-time
limit d, being independent of the shear flow, satisfy the nor-
mal equipartition theorem. This is expected since the shear
flow is only along thex direction, and thesx,yd components
of the random force have been assumed uncorrelated. More-
over, a kinetic temperature, as opposed to the thermody-
namic temperatureT in Eqs.s5cd, may be defined by relating
the average particle kinetic energy tokBTkin. Then, the ki-
netic temperature along the direction of the shear becomes
time dependent and a function of particle masssthrough the
dependence onbd and of properties of the fluid flowsthe
local fluid gradientad.

The long-time limit of the equal time correlationky2stdl
may be used to obtain the Stokes-Einstein expression for the
diffusion coefficient,

D0 =
1

2

d

dt
ky2stdl =

kBT

bm
. s8d

Note that the diffusion coefficient is first order inb−1, a
result that will be used later in Sec. IV.

The shear flow also modifies the time-dependent particle-
velocity autocorrelation functions. Ensemble averages of the
formal solutions of the equations of motionss3d give in the
diffusive limit st@b−1d, neglecting terms involving powers
of exps−btd,

kvxst + tdvxstdl

=5
kBT

m
He−bt +

1

2
St2f4bt − 8 −e−btsbt + 3dgJ

for t ù 0,

kBT

m
Hebt +

1

2
St2f4bst + td − 8 +ebtsbt − 3dgJ

for t , 0,

6
s9ad

kvxst + tdvystdl

=52
kBT

m
StF1 −

1

4
e−bts2bt + 3dG for t ù 0,

kBT

m

1

2
Stebt for t , 0,6

s9bd

kvyst + tdvystdl =
kBT

m
e−butu ∀ t. s9cd

Hence, the combined effects of particle inertia and shear flow
modify both the amplitude of the autocorrelation functions
and their time dependence. The dependence of the autocor-
relation functions on particle inertia and shear rate has been
expressed in terms of the Stokes number, St=a /b. The shear
flow not only breaks spatial symmetry but alsosmacro-
scopicd time reversibility and stationarity: the particle-
velocity autocorrelation function in the streamwise direction
is nonstationary. Of course, the velocity correlations perpen-
dicular to the shear decay exponentially in time as expected
for a Gaussian, stationary Markov process, an Ornstein-
Uhlenbeck process. The shear-induced modifications of the
autocorrelation functions become more transparent if the
contribution of the underlying shear flow is subtracted. Spe-
cifically, the autocorrelation functions of the fluctuating par-
ticle velocities with respect to the shear flow,vx9std=vxstd
−aystd, becomesin the long-time limitd

kvx9stdvx9s0dl =
kBT

m
e−butuF1 +

1

2
St2sbutu + 1dG ∀ t,

s10ad

3Time-scale separation is also implicit in the separation of the
fluid velocity into a mean part and a fluctuating part, which gives
rise to the random force in the particle equations of motions1d.
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kvx9stdvys0dl =5−
kBT

m

1

2
Ste−bts2bt + 1d for t ù 0,

−
kBT

m

1

2
Stebt for t , 0.6

s10bd

Thus, the autocorrelation functions of the fluctuating particle
velocities are stationary and the velocity correlation along
the shear is symmetric in the time differencet, but the cross
correlation is nonsymmetric int. Since in the local reference
frame time stationarity is recovered, the dependence of the
autocorrelation functions ont has been dropped: note, how-
ever, that these expressions are valid only in the long-time
limit sbt@1d. The time decay of the velocity correlation
function along the flow direction is not a pure exponential,
but it is modified by an algebraic prefactor; hence, the un-
derlying stochastic processvx9std is not an Ornstein-
Uhlenbeck process. Furthermore, since the cross correlation
is stationary,kvx9stdvys0dl=kvx9s0dvys−tdl, but since it is not
symmetric,kvx9stdvys0dlÞ kvx9s0dvystdl. The time asymmetry
of the cross correlation implies that for a negative time dif-
ferencet,0 the correlation decays exponentially, whereas
for tù0 the correlation initially increases at short relative
times to decrease exponentially at longer time. The maxi-
mum occurs atbt=1/2.

These qualitative observations are summarized in Fig. 1,
where the three correlation functions are compared. The nor-
malizedsat the origind autocorrelation functions are plotted,
Cijstd=kvi9stdv j9s0dl / kvi9s0dv j9s0dl, as functions of time ren-
dered dimensionless by ab scaling. The autocorrelation
along the streamwise directionCxxstd has been parametrized
by three values of Stokes number; the other two normalized

correlationsCxystd andCyystd are independent of the Stokes
number. Note that with increasing Stokes number the cusp at
the origin, characteristic of the short-time behavior ofCyystd,
becomes rounded. The St=10 curve is also the value of
Cxxstd in the limit the St→`. The velocity autocorrelation
functions will be reconsidered in Sec. IV since they are re-
lated to particle diffusion coefficients through Green-Kubo
relations.

Reeksf17g in an analysis of particle turbulent dispersion
in a shear flow reports equations similar to Eqs.s10d. It can
be shown that the results of Ref.f17g for the case of fluid-
point dispersion lead to velocity autocorrelation functions
identical to those presented above. Similarly, Eckhardt and
Pandit f12g obtained results formally equivalent to ours for
the effect of shear on fluid velocity fluctuations. Note, how-
ever, that for the system under consideration the effects of
the shear flow and particle inertia are described in terms of
the particle Stokes number: hence, for a given shear rate
changes of the Stokes number imply changes of the particle
relaxation timesi.e., of the particle’s inertiad.

III. EULERIAN DESCRIPTION

The Eulerian description of the motion ofN, independent
and identical Brownian particles in terms of the average
phase space densityPsx ,v ; td is an alternative to the La-
grangian description in terms of stochastic differential equa-
tions. The Fokker-Planck equation associated with the par-
ticle equations of motions1d may be derived in numerous
ways, including the elegant functional derivation of Refs.
f18,19g. It becomes

]

]t
P +

]

]x
· svPd − b

]

]v
· fsv − udPg = b

kBT

m

]2

]v2P, s11d

where the fluctuation amplitude, defined in Eq.s7d, was used.
The probability density functionP is normalized on the total

FIG. 1. Time dependence of
the fluctuating particle-velocity
autocorrelation functions in the
diffusive limit, parametrized by
the Stokes number: solid lines are
Cxxstd, the dashed lineCxystd, and
the dash-dotted line isCyystd.
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number of particles. As mentioned before, Eq.s11d differs
from the Fokker-Planck equation derived by Santamaría-
Holek et al. f6g in the diffusive term since we used the clas-
sical FDT.

The probability density functionP is used to define aver-
age quantities. In particular, the mean, local particle velocity,
a quantity defined as in kinetic theory of gasesf21g, is

rsx;tdv̄sx;td = mE dvPsx,v;tdv,mknvl, s12d

with n the “instantaneous” particle number density and
rsx ; td the local, average particle mass density,

rsx;td = mE dvPsx,v;td. s13d

The fluctuating component of the particle velocity field, de-
fined with respect to the mean particle velocity,4 will be de-
noted byv8=v− v̄.

These local averages, denoted by an overbar and known
as density-weighted averages in two-fluid descriptions of dis-
persed flows, are averages with respect to a local, properly
normalized velocity probability density distribution

csx,v;td =
Psx,v;td

E dvPsx,v;td
. s14d

The integral ofc over particle velocities is, thus, unity.
The appropriate equations to describe particle dispersion,

also known as “continuum” or “hydrodynamic” equations,
are obtained by taking velocity moments of the Fokker-
Planck equation. In particular, the particle mass conservation
equation is obtained by multiplying Eq.s11d by m, integrat-
ing over particle velocities, and using Eq.s13d. Multiplying
the Fokker-Planck equation bymv8 and realizing that
mknv8v8l=rv8v8 fsee the definition Eq.s14dg gives the mo-
mentum conservation equation. Accordingly, they become
ssee alsof18gd

dr

dt
= − r = · v̄, s15ad

dv̄
dt

= bsu − v̄d −
1

r

]

]x
· srv8v8d, s15bd

where the total derivatived/dt=] /]t+ v̄ ·= describes
changes with respect to the mean particle velocity, and the
dot denotes matrix multiplication. Equationss15d are a spe-
cial case for a white noise random force of the general con-
tinuum equations for the dispersed phase in inhomogeneous
flows derived by Reeksf10g.

The momentum equation Eq.s15bd may be compared to
the momentum equation that expresses momentum balance
in the particulate phasef22,23g:

dv̄
dt

= bsu − v̄d −
1

r
= ·PIp, s16d

wherePIp is the unspecified, particle-phase total pressure ten-

sor. Comparison yieldsPIp=rv8v8. It is easy to showfvia Eq.
s14dg that the expression for the particle-phase pressure ten-
sor is identical to the pressure tensor as defined in kinetic
theory f20g or in mesoscopic nonequilibrium thermodynam-
ics f6g

PJp = mE dvsv − v̄dsv − v̄dPsx,v;td. s17d

It is apparent from the previous discussion that the con-
tinuum equations and the identification of the particle-phase
pressure tensor with the particle covariances only require that
the random force be white in time. Thus, the previous ex-
pressions are valid for a general flow field and not only for a
linear flow field sas long as the random force is whited. In
what follows we restrict the calculation to a linear flow field,
eventually evaluating average quantitiessfor example, the
mean particle velocity and the particle-phase pressure tensord
for the specific case of a simple shear flow, as discussed and
justified in the Introduction.

For a linear flow field the Fokker-Planck equation defines
a Gaussian process forfx ,vg and thus it has an analytic
solution; see, for example, Refs.f18,21g. The Gaussian solu-
tion may be used to evaluate explicitly the density-weighted
ensemble averages; Swailes and Darbyshiref21g report the
analytic expressions. For Brownian particles injected at the
origin of the coordinate system with zero initial velocity the
spatially dependent particle concentration issRef. f21g pre-
sents the analytic solutions for arbitrary initial conditionsd

rsx;td =
1

2pfdetskxxldg1/2 expF−
1

2
xT · kxxl−1 ·xG ,

s18d

the mean particle velocity

v̄sx;td = kvxl · kxxl−1 ·x, s19d

and the particle-velocity covariances

v8v8std = kvvl − kvxl · kxxl−1 · kxvl, s20d

where the superscript in Eq.s18d denotes transpose. Thus, for
the Gaussian process the mean particle velocity is linear inx,
and the particle covariances are spatially independent. Ana-
lytic expressions for the long-time behavior of the mean par-
ticle velocity and its approach to the steady-state valuesthe
carrier flow velocityd are presented in the Appendix. For
completeness note that explicit evaluation of the necessary
correlation functions in the long-time limit shows that
limt→` v8v8=ksv−ud2l since limt→`kvl=u.

The long-time particle-phase pressure tensor may then be
evaluated using Eqs.s5d ands20d: expressed as a function of
the Stokes number, it becomes

4Primed variables refer to fluctuating velocities with respect to the
mean particle velocity, whereas double-primed variables are defined
with respect to the carrier fluid velocity; see Eqs.s10d.
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PJp = r
kBT

m
FS1 +

St2

4
DIJ−

St

2
S0 1

1 0
D +

St2

4
S1 0

0 − 1
DG .

s21d

The particle pressure tensor has been decomposed into a
form reminiscent of the pressure tensor of a simple liquid
undergoing laminar plane Couette flowf2g. The first term is
isotropic and proportional to the identity tensor; the other
two terms constitute what has been calledf24g the “friction
pressure tensor.”5 The first part of the isotropic term gives
the ideal gas pressure of a collection of Brownian particles
s“Brownian-particle gas”d, a result that has been previously
postulated on phenomenological argumentsf3,4g. The ideal
gas pressure is modified by a correction dependent on the
Stokes number. The other terms, usually neglected, arise
from the particle viscous stresses. The second term is pro-
portional to the symmetric rate-of-strain fluid tensor, 2eJ

=¹W uW +s¹W uWdT. Thus, thesnegatived proportionality constant
defines the shear viscosity of the particle phase to be

hp
shear=

1

2
D0r. s22d

Hence, the Brownian shear viscosity, being independent of
the shear rate, is a conventional Newtonian viscosity. An
alternative expression for Eq.s22d is that the particle
Schmidt number, the ratio of momentum diffusivity to mass
diffusivity, is Scp=shp

shear/rd /D0=1/2, as is thecase for par-
ticle motion in a turbulent flow in which the particle re-
sponse time is much larger than the turbulent time scalef17g.
The third term, which is absent in Newtonian fluids, shows
that the particle phase exhibits non-Newtonian rheology, as
has been remarked for sheared simple liquidsf2,24g. Note
that the last term, as well as the correction to the ideal gas
pressure, is second order in the Stokes number. Hence to
leading order in St the viscous part of the particle pressure
tensor is traceless, and the particle phase behaves as a New-
tonian fluid. Non-Newtonian behavior becomes evident only
to second order. Moreover, according to Eq.s21d fand Eq.
s8dg in the absence of diffusion, for sufficiently massive par-

ticles,PIp=0.
As remarked in Sec. II if local equilibrium is assumed, as,

for example, in Ref.f16g, ksv−udsv−udl,kBT1I/m, the
Brownian particle distribution becomes locally Maxwellian.
Then, from Eqs.s5cd the fluctuation strengths can be calcu-
lated to form a symmetric tensor dependent on the shear rate.
As extensively argued in Sec. II the dependence of the fluc-
tuation strengths on the shear rate implies that the externally
imposed shear modifies the properties of the random force, a
condition that is unlikely to hold when the relevant time
scales sinverse shear rate and molecular relaxation time
scaled are clearly separated. Moreover, for a local equilib-
rium assumption a similar calculation shows that the

particle-phase pressure tensorsin the long-time limitd con-

tracts to the ideal gas result,PIp
l.eq.=rsx ; tdkBT1I/m; i.e., there

is no viscous shearing.
Equation s21d along with Eqs.s15d is our main result.

These equations are analytic, nonperturbative expressions
that describe the long-time behavior of the dispersed phase:
they incorporate the effects of the flow field and the com-
bined effects of particle diffusion and particle inertia on the
particle-phase total pressure tensor. However, the momentum
equation is coupled to the mass conservation equation. The
two ssteady-stated equations are, usually, decoupled by per-
forming a low-Stokes-number expansion of the momentum
equation to obtain a perturbative expression for the mean
particle velocity field in terms of the fluid velocity and its
gradientsf4g. Substitution of the resulting mean particle ve-
locity into the particle mass conservation equation then gives
the associated convective-diffusion equationf3g. For the case
of a simple shear this procedure leads to a generalized
Smoluchowski equationfsince the local average density is
defined as an integral of the average phase-space densityP,
Eq. s13dg, as we show in the following section.

IV. SMOLUCHOWSKI EQUATION

The momentum equations15bd, an equation valid for a
general flow field and a white random force, may be rear-
ranged to obtain an explicit expression for the total time
derivative of the mean-particle-velocity fieldsalso referred to
as the inertial acceleration termd. For the specific case of a
simple shear differentiation of the analytic, time-dependent
expression for the particle concentration Eq.s18d leads to

rx = − kxxl ·
]r

]x
, s23d

which substituted into the equation for the mean-particle-
velocity equations19d expresses the particle mean velocity in
terms of the density gradient:

v̄ = − kvxl ·
1

r

]r

]x
. s24d

Moreover, a variant of Eq.s23d, obtained by multiplying it
by the shear-rate tensoraI, determines the carrier flow veloc-
ity

ru = − kuxl ·
]r

]x
. s25d

Equationss24d and s25d, derived from the time-dependent
solution for the local particle density, are generally valid for
a simple shear and not only in the long-time limit. Their
substitution into the momentum equations15bd, along with
the realization that for a linear flow fieldsand, in particular, a
simple sheard the velocity covariances are spatially indepen-
dent, leads to

r
dv̄
dt

= fbksv − udxl − v8v8g ·
]r

]x
,MI ·

]r

]x
. s26d

Hence, the inertial acceleration term in a simple shear may
be explicitly evaluated: specifically, Eqs.s5d along with Eqs.

5If the momentum equation had been expressed in terms of the

total particle-phase stress tensor, the negative ofPJp as defined by
Eq. s16d, then these terms would constitute the deviatoric particle
stress tensor.
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s7d and s20d provide analytic expressions for the necessary
correlationssin the diffusive limitd. Their substitution into
Eq. s26d yields

MI =
kBT

m
StS− 2St − 1

1 0
D . s27d

Thus, the proportionality matrixMI is of the order of the
Stokes number; note, however, that for a simple shear the
convective derivatives of the flow fieldfsu ·= dug vanish. In
this respect the simple shear differs from the symmetric and
antisymmetric shear, the other possible representations of a
general two-dimensional linear flow field. Equations27d for
the inertial acceleration term and Eq.s21d for the particle-
phase pressure tensor were derived for the specific case of a
simple shear. Hence, they may be substituted into the gen-
eral, particulate-phase, momentum-conservation equation
Eq. s16d or, equivalently, into Eq.s15bd, rewritten as

v̄ = u −
1

br
= ·PIp −

1

b

dv̄
dt

, s28d

to obtain the analytic, nonperturbative expression for the
mean-particle-velocity field in the diffusive limitst@b−1d:

v̄ = u − ksv − udxl ·
1

r

]r

]x
s29d

=
bt@1

u − D031I −
3

2
St1 St 1

−
1

3
024 ·

1

r

]r

]x
. s30d

Note that Eq.s29d may also be derived by a judicious com-
bination of Eqs.s24d and s25d as can be seen by expanding
the ensemble averageksv−udxl. The alternative derivation
presented earlier, however, is more instructive because it al-
lows the identification of the contribution of the particle-
phase pressure tensor and the inertial acceleration to the dif-
fusion coefficient, as discussed in what follows.

To leading order in the particle relaxation timesb−1d the
mean particle velocity is the fluid velocity modified by a
diffusion termsFick diffusiond. Fick diffusion stems from the
ideal part of the particle-phase pressure tensor. The correc-
tion to Fick’s law arises from the inertial acceleration and the
particle viscous stresses. In fact, the contribution of the iner-
tial acceleration term in Eq.s28d is of the same order as the
contribution from the particle-phase viscous stresses. Either
contribution to the mean-particle velocity is at least second
order inb−1 fsee, also, Eq.s8dg. Hence, in a simple shear it is
inconsistent to retain particle viscous stresses and neglect
inertial acceleration and vice versa.

The convective-diffusion equationsSmoluchowski equa-
tiond associated with the two coupled equationss15d is ob-
tained by substituting the mean-particle-velocity equation
s29d into the mass conservation equation to obtain

]r

]t
+ = · srud = ksv − udxl ·

]2r

]x2 . s31d

Equations31d defines the diffusion tensorDI =kv9xl that de-
pends on both particle inertia and the shear rate through the
Stokes number. In the long-time limit it is given by the sec-
ond term on the right-hand sidesRHSd of Eq. s30d. Note that
the diffusion tensor, as well as the matrix expression for the
inertial acceleration term, Eq.s27d, is not symmetric, reflect-
ing the symmetry-breaking effect of the imposed shear.
Therefore, the long-time generalized Smoluchowski equation
becomes

]r

]t
+ ay

]r

]x
= D0S1 −

3

2
St2D ]2r

]x2 − D0St
]2r

]x]y
+ D0

]2r

]y2 .

s32d

Since the inertial acceleration term is antisymmetric, it only
modifies the diffusion coefficient in the streamwise direction;
the modification is second order in the Stokes number. The
first-order correction through the appearance of the cross-
derivative term arises solely from the viscous part of the
particle pressure tensor. The same first-order correction to
the Smoluchowski equation was derived by Subramanian
and Bradyf5g, who, however, did not calculate higher-order
corrections.

The sign of the long-time diffusion coefficient along the
flow direction,Dxx in Eq. s32d, depends on the value of the
shear rate. For large shear rates it becomes negative, the
critical Stokes number being St=Î2/3. The long-time limit
of the off-diagonal diffusion coefficients is such thatDyx is
always positive, whereasDxy is always negativefSee Eq.
s30dg. The other diffusion coefficientDyy is always positive.
The dependence of the diffusion coefficient on particle iner-
tia svia the Stokes numberd is shown in Fig. 2.

The existence of negative diffusion coefficients does not
violate any stability conditions since the coefficients that ap-
pear in the convective-diffusion equation refer to the particle
diffusive flux with respect to the underlying carrier flow. As
expected from general stability arguments the total diffusive
flux defined with respect to a fixed reference frame, and not
with respect to the carrier flow, is always positive. The mean
particle velocity expressed in terms of the density gradient,
Eq. s24d, defines the total diffusion coefficients, which in the
diffusive, long-time limit become

DI tot, kvxl = D011 + a2t2 2at

a

b
1 2 . s33d

Therefore, the total diffusion tensor is time dependent, non-
symmetric, the corresponding matrix positive definite, and its
components are always positive, thereby assuring the stabil-
ity of the system. The shear-induced modification of the total
diffusion coefficients, in particular the quadratic time depen-
dence of the streamwise diffusion coefficient, has been noted
before—for example, in Refs.f2,9,15g. Note that the sym-

metric part ofDI tot gives the total diffusion coefficients as
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determined from the rate of change of the particle mean-
square displacement.

The long-time diffusion coefficients may also be obtained
from the velocity autocorrelation functions presented in Sec.
II. The following Green-Kubo relations, also known as Tay-
lor’s diffusion formulas for diffusion via continuous move-
ments in theories of turbulent particle dispersion, express the
diffusion coefficients in terms of the velocity autocorrelation
functions:

DIstd = kv9stdxstdl =E
0

t

dt1kv9stdvst1dl. s34d

In the diffusive limit they become

DI =E
0

`

dt1 lim
t→`

fkv9stdvst − t1dlg, s35d

expressions that reproduce the diffusion tensor Eq.s30d fsee,
also, Eq.sA5dg.

Equations35d, in addition to providing the long-time dif-
fusion coefficients in terms of velocity autocorrelations, al-
lows a physical interpretation of the negative diffusion coef-
ficients. Specifically, the long-time limit ofDxy is always
negative because a particle crossing the mean shear flow
with positive vy will have negative streamwise fluctuations
sas the mean flow increases withyd. Along the streamwise
directionDxx becomes negative for large shear rates because
streamwise fluctuationsvx9=vx−ay become negative for
large values of the shear ratea sfor vx.0d.

The results presented in this section may be critically
compared to earlier analyses of diffusive motion in nonuni-
form flows. We showed, via the derivation of analytic, long-
time expressions, that in a simple shear the inertial accelera-
tion termstotal derivative of the mean particle velocityd and

the particle-phase viscous stresses have to be treated consis-
tently. In particular, we argued that in perturbative evalua-
tions of, for example, the Brownian particle diffusive flux in
a simple shear, it is inconsistent to retain the particle-phase
viscous stresses and neglect inertial acceleration and vice
versa. Previous studies differ from ours in the way these two
terms sPIp and dv̄ /dtd are treatedsand to a lesser degree in
the choice of the underlying flow fieldd.

Specifically, Fernández de la Mora and Rosnerf4g consid-
ered the effect of inertia on diffusional deposition for a gen-
eral flow field. They solved the steady-state momentum
equation, Eq.s28d, to leading order inb−1, keeping only the
ideal-gas part ofPIp and the leading-order contribution from
the inertial acceleration termfb−1su ·= dug. For a general
flow field this is a consistent approximation: higher-order
corrections would require an expression for the particle vis-
cous stresses. For a simple shear their result reduces to ours
to the same orderfv̄=u−D0= ln r+Osb−2dg since, as noted
earlier, the convective derivatives of the flow field vanish in
a simple shear.

Ramshawf3g also analyzed Brownian motion in a general
flow field, but his analysis differs from ours in that particles
of negligible inertia were considered. He developed a leading
order inb−1 expansion, neglecting both viscous stresses and
inertial acceleration, but keeping other forces—e.g., thermo-
phoresis. Ramshawf25g extended the original derivation to
include phenomenologically viscous stresses in the particle
and mixturesparticle and fluidd momentum equations, retain-
ing, however, the assumption of negligible particle inertia.
He found that inclusion of viscous stresses in the mixture
equation and evaluation of the suspension viscosity by Ein-
stein’s formula leads to an additional term in the diffusion
tensor proportional to the particle-phase volume fraction.
Our calculation considers an infinitely dilute suspension, and
hence this additional term is absent from Eq.s30d. Moreover,

FIG. 2. Dependence of the
long-time diffusion coefficients on
particle inertia expressed in terms
of the Stokes number. The compo-
nents Dyx sdash-dotted lined and
Dyy sdotted lined are always posi-
tive, Dxy sdashed lined always
negative, whereas the sign ofDxx

ssolid lined changes as a function
of the Stokes number.
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his calculation shows that inclusion of viscous stresses only
in the particle-phase momentum equation does not modify
the diffusion coefficient if the particle shear viscosity is
evaluated as if the particles were an ideal gassand, hence,
the shear viscosity is independent of the particle mass den-
sityd.

The analysis of Santamaría-Holeket al. f6g, who consid-
ered diffusion in a simple shear as in this work, differs from
ours primarily in the use of the nonequilibrium FDTsas sum-
marized in Sec. IId. Moreover, the diffusion tensor was
evaluated perturbatively in the particle relaxation timesb−1d,
retaining the viscous part of the particle-phase pressure ten-
sor and neglecting the contribution from the inertial accel-
eration term. As shown earlier, when the classical form of the
FDT is used these two terms contribute to the same order
sb−2d in the perturbation expansion. However, the resulting,
leading-order correction to the Smoluchowski equation is
identical to ourssup to the nonequilibrium modificationd be-
cause the inertial accelerationsbeing antisymmetricd contrib-
utes only to the highest order. A similar remark applies to the
leading-order correction to the Smoluchowski equation de-
rived by Subramanian and Bradyf5g swho neglected the non-
equilibrium modification, as in this workd.

V. CONCLUSIONS

The primary question addressed in this work is how par-
ticle inertia modifies diffusional transport of particles in a
nonuniform flow. The usual convective-diffusion equation
describes diffusional transport in the limit where the particles
follow the fluid stream lines. It is an Eulerian continuum
equation that provides a computationally efficient method to
calculate particle transportsand depositiond; however, iner-
tial effects are neglected. Inertial transport, where particle
trajectories deviate considerably from the fluid stream lines,
is best calculated via a Lagrangian description in terms of the
particle equations of motion. Diffusive particle motion may
be incorporated in the Lagrangian formulation through the
addition of a random force, but the numerical solution of the
resulting stochastic differential equations is computationally
intensive. It is, thus, desirable to derive a continuum equa-
tion valid in the transition regime between the diffusion limit
and the inertia-dominated limit, incorporating both particle-
transport mechanisms.

We considered the coupled diffusive and inertial motion
of noninteracting Brownian particles in a simple inhomoge-
neous fluid flow, a simple shear flow. The long-time, diffu-
sive, behavior of the system was investigated neglecting the
short-time regime. Even though the choice of a simple shear
as the underlying carrier flow is restrictiveffor example, the
convective derivatives of the flow vanish,su ·= du=0, a con-
dition that does not hold for a symmetric or antisymmetric
shearg the choice was motivated by numerous previous in-
vestigations of Brownian motion in such a flow. More im-
portantly, the Fokker-Planck equation associated with the
particle equations of motion in a linear flow field is of the
linear typef8g and, hence, analytically solvable. The solution
of the Fokker-Planck equation was used to obtain analytic
expressions for average particle properties—for example, the

mean particle velocity and particle-velocity correlations.
These analytic solutions depend on equal-time ensemble av-
erages that were determined from the formal solutions of the
Langevin equations for particle motion. The classical form of
the fluctuation-dissipation theorem was used to determine the
strength of the random force correlations, neglecting correc-
tions of the order of the ratio of the fluid molecular relax-
ation time to the time scale of the imposed shear. We showed
that the long-time, time-dependent particle-velocity autocor-
relation along the streamwise direction is nonstationary. The
fluctuating velocity autocorrelations were determined to be
stationary in time, but the cross correlation was nonsymmet-
ric in the time difference, reflecting the combined effect of
particle inertia and shear on particle-velocity fluctuations.

We used the analytic solution of the Fokker-Planck equa-
tion, in conjunction with its first two-velocity-moment equa-
tions, to obtainfin the diffusive limit st@b−1dg the general-
ized convective-diffusion equation sgeneralized
Smoluchowski equationd that incorporates inertial effects on
diffusional transport for dilute suspensions. The coupling of
particle inertia to the fluid flow introduces a shear-dependent,
linear in sparticled Stokes number, cross-derivative term and
an additional term along the streamwise direction, quadratic
in the Stokes number. The associated diffusion tensor, thus,
depends on the shear rate and particle inertia; the diffusion
coefficient along the streamwise direction flow was found to
become negative for large particle relaxation timessor,
equivalently, for large shear ratesd, whereas one of the cross-
diffusion coefficient was determined to be always negative,
the other two being always positive. We argued that stability
conditions are not violated since the total diffusion coeffi-
cientssnot those with respect to the carrier flowd that mea-
sure the rate of change of particle mean-square displacement
were determined to be always positive.

We showed that in a simple shear and in the long-time
limit the contribution of the inertial acceleration term to the
diffusion tensor in the generalized Smoluchowski equation is
of the same order in the Stokes number as that of the viscous
part of the particle-phase pressure tensor. Thus, in perturba-
tive evaluations of, for example, the Brownian particle dif-
fusive flux, it is inconsistent to retain the particle-phase vis-
cous stresses and neglect the inertial acceleration term and
vice versa.

As part of the derivation of the Smoluchowski equation
we calculated the particle-phase total pressure tensor that
was determined to be second order in the Stokes number.
Similar to the pressure tensor of simple sheared liquids, the
pressure tensor was decomposed into three parts: a part pro-
portional to the identity tensor that gives the ideal pressure of
a gas of Brownian particle with an additional term due to
particle inertia, and two terms that arise from the particle
viscous stresses. We found that the particle phase has a con-
ventional shear viscosity, but it behaves as a non-Newtonian
fluid if second-order effects in the Stokes number are con-
sidered.

These results will be extended to other two-dimensional
linear flows in future work.
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APPENDIX: APPROACH TO THE STEADY STATE

The time-dependent, equal-time correlation functions in
conjunction with Eq.s19d for Eq. s24dg may be used to cal-
culate the approach of the mean particle velocity to its
steady-state value. The required calculations were performed
with MATHEMATICA f26g. Accordingly, the mean particle ve-
locity approaches the carrier fluid velocity as follows:

lim
t→`

v̄x = ayS1 −
3

bt
D + F 9x

2b
−

3y

a
S1 −

3

2
St2DGt−2 + Ost−3d,

sA1ad

lim
t→`

v̄y =
2y

t
−

3

a
Sx +

St

2
yDt−2 + Ost−3d. sA1bd

Note that the long-time limit and the vanishing shear-rate
limit do not commute since

lim
t→`

s lim
a→0

v̄xd =
x

2t
S1 +

3

2bt
D +

3y

4
F1 −

2

3bt
−

19

12sbtd2Ga

+ Osa2d, sA2ad

lim
t→`

s lim
a→0

v̄yd =
y

2t
S1 +

3

bt
D −

x

4
F1 −

2

bt
−

5

4sbtd2Ga + Osa2d.

sA2bd

The zeroth-order terms of Eqs.sA2d give the mean particle
velocity of Brownian particles in a quiescent fluid.

The time-dependent approach of the mean particle veloc-
ity to its steady-state value may be used to estimate the rela-
tive importance of the two terms in the total derivative of the
mean particle velocity: namely,] /]t andsv̄ ·= d. Appropriate
differentiation of Eqs.sA1d, along with

] log r

]x
=

1

St

m

kBT

3y

t2
+ Ost−3d, sA3ad

] log r

]y
= −

2y

D0t
+ Ost−2d, sA3bd

shows that the explicit time derivative vanishes in the long-
time limit sto leading order in t−1d to give rsv̄ ·= dv̄
=MI ·]r /]x. Hence, the leading-order contribution to the total
derivative does not arise from the explicit time derivative.

For completeness we also present the approach to steady-
state values of the particle-velocity covariances

lim
t→`

vx8vx8 =
kBT

m
F1 + St2S1

2
−

9

2bt
DG , sA4ad

lim
t→`

vx8vy8 = −
kBT

2m
StS1 −

6

bt
D , sA4bd

lim
t→`

vy8vy8 =
kBT

m
S1 −

2

bt
D . sA4cd

The evaluation of the streamwise diffusion coefficientDxx
via the Green-Kubo relationss35d requires the nonstationary
correlation function

kvxst − tdystdl = 2
kBT

m
StSt − t

2

b
−

1

4b
e−btD for t ù 0.

sA5d
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