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Brownian motion of finite-inertia particles in a simple shear flow
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Simultaneous diffusive and inertial motion of Brownian particles in laminar Couette flow is investigated via
Lagrangian and Eulerian descriptions to determine the effect of particle inertia on diffusive transport in the
long-time limit. The classical fluctuation dissipation theorem is used to calculate the amplitude of random-force
correlations, thereby neglecting corrections of the order of the molecular relaxation time to the inverse shear
rate. In the diffusive limittime much greater than the particle relaxation tirtne fluctuating particle-velocity
autocorrelations functions are found to be stationary in time, the correlation in the streamwise direction being
an exponential multiplied by an algebraic function and the cross correlation nonsymmetric in the time differ-
ence. The analytic, nonperturbative, evaluation of the particle-phase total pressure, which is calculated to be
second order in the Stokes numléardimensionless measure of particle inertshows that the particle phase
behaves as a non-Newtonian fluid. The generalized Smoluchowski convective-diffusion equation, determined
analytically from a combination of the particle-phase pressure tensor and the inertial acceleration term, con-
tains a shear-dependent cross derivative term and an additional term along the streamwise direction, quadratic
in the particle Stokes number. The long-time diffusion coefficients associated with the particle flux relative to
the carrier flow are found to depend on particle inertia such that the streamwise diffusion coefficient becomes
negative with increasing Stokes number, whereas one of the cross coefficients is always negative. The total
diffusion coefficients measuring the rate of change of particle mean-square displacement are always positive as
expected from general stability arguments.
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[. INTRODUCTION equations(macroscopic “hydrodynamic” equationsequire
] o o . i constitutive relations for the particle-phase total pressure ten-

Combined inertial and diffusive motion of Brownian par- sor, A frequently made approximation is to consider the
ticles in a flowing fluid is important in a number of aerosol Brownian particles as an “ideal gas,” thereby using a phe-
processes, including filtration, aerosol sampling, depositiomomenological expression for the particle-phase pressure ten-
in bends, and particulate deposition in the human respiratorgor[3,4].
tract. The limit of negligible inertial effects, where the par- Mesoscopic descriptions of Brownian motion involve sto-
ticles follow closely the motion of the fluid, has been exten-chastic particle equations of motion and the associated
sively studied in sheared colloidal suspensiph®]. These Fokker-Planck equation, as, for example, in Subramanian
two-phase systems, which consist of a dispersed particula@nd Brady{5] where a multiple-scale analysis of the Fokker-
phase and a continuous fluid phagas for aeroso)s have  Planck equation in a simple shear flow is presented. In me-
long been of interest for their important industrial and engi-Soscopic descriptions in terms of Langevin equations the
neering applications. Pure diffusive particle motion is usuallyfluctuation dissipation theoreitiDT) is an essential ingre-
described by a convective gradient-diffusion equation fromdient of the calculation. Santamaria-Holekal. [6] used an
which inertial effects are absent. The limit of inertial trans-&ltérnative approach by considering the motion of a
port, where diffusion is neglected and particle trajectorieBrownian-particle in an external flow field as an example of
deviate significantly from the fluid stream lines, is most con-2 driven, far-from-equilibrium system. They used mesos-

veniently described in terms of the particle equations of mo<OPIC nonequilibrium thermodynamics, an approach that

tion in a Lagrangian formulation. In the transition regime does not require the specification of the stochastic properties

between the diffusion limit and the inertia-dominated limit of the random force, to obtain the Fokker-Planck equation
a}r the nonequilibrium Brownian particle distribution func-

; . . f

the two particle-transport mechanisms have to be conS|deret n in a simple shear flow. They found that the diffusion
swq_ur:tan?fously.f icle inerti he diffusi . f tensor in the Fokker-Planck equation depends on the shear

he effect of particle inertia on the diffusive motion o rate, concluding that fluctuations about the nonequilibrium

noninteracting Brownian particles in nonuniform fluids has e, 4y state lead to a violation of the classieajuilibrium)

been examined via numerous approaches. Continuum d
scriptions in terms of mass and momentum conservation - atic theory has also been used to obtain the Fokker-

Planck equation for the motion of Brownian particles in rar-
efied nonuniform gases. Fernandez de la Mora and Mercer

*Electronic address: ioannis.drossinos@jrc.it [7] expanded the Boltzmann collision operator in the ratio of
TPermanent address: School of Mechanical and Systems Enginedhe light-gas molecular mass to the Brownian-particle mass;

ing, University of Newcastle, Newcastle upon Tyne, NE1 7RUthey approximated the light-gas distribution function by the
United Kingdom. Electronic address: Mike.Reeks@newcastle.ac.ufirst two terms in the Chapman-Enskog expansion to derive a
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Fokker-Planck equation whose diffusion tensor was foundnutatis mutandidor turbulent dispersion in a simple shear
independent of light-gas velocity gradients]. However,  with the proviso that FDT is not a property of the turbulent
Rodrigezet al.[8], using a similar low-mass-ratio expansion motion. Similarly, a Langevin equation equivalent to the one
of the collision operator for Maxwellian fluid molecules, ob- presented in this work for the fluctuating Brownian particle
tained a Fokker-Planck equation in a uniform shear flow withyelocities has also been used to describe the effect of shear
a diffusion tensor that depended on the irreversible fluidon fluid velocity fluctuationg12]. In the identification of
stress tensor. ) ] ) ) _ similarities and differences between Brownian-particle mo-
Herein, we consider a dilute suspension of noninteractingjon and fluid-point motion the Stokes number used in this

Brownian particles in a two-dimensional, simple shéami- 51 corresponds to the dimensionless ratio of the fluid time
nar, plane Couette flowlInertial Brownian particles are con- scale to the inverse shear rate

fr:iepr)gcrjt:icrll:rpeeigig[?orgiliﬁe\,\g?ﬁg it\(/):re'zsse r:rjmrg:ﬁar'?euoo?fmor& The Lagrangian description is presented in Sec. Il where
properly strain rate, a dimensionless number that describe e.Browman_—partmIe vel_ocny autoco_rrelatlon f_un_ct|ons are
erived. Section Il contains the Eulerian description and the

article response to spatial changes in the carrier flow veloc= . . ; .
ﬁy) is finit«f (at Ieastpof order ugnil)y The limit of small analytic solution of the Fokker-Planck equation. The analytic

Stokes number corresponds to pure diffusive motionexpre_ssion for the total particlejphase_: pressure tensor as a
whereas for large Stokes numbers inertial transport domitunction of the Stokes number is derived. The generalized
nates. A mesoscopic approach is adopted, whereby both L&Mmoluchowski equation is calculated in Sec. IV, as well as
grangian and Eulerian descriptions are presented to investil® Green-Kubo expressions for the diffusion coefficients.
gate the effect of particle inertia on the convective-diffusion € conclusions are summarized in Sec. V, whereas technical
equation(equivalently, the Smoluchowski equatjom the  details are presented in the Appendix.
long-time, diffusive limit. The classical FDT is used since we
argue that the modification of the classical FDT derived in
Refs.[6,8] is of the order of the ratio of the moleculéiuid)
relaxation time(a molecular time scaleo the inverse shear Consider, thus, a Brownian particle of massn a two-
rate (a macroscopic time scaleand thus negligible for typi- dimensional unbounded laminar, plane Couette shear flow—
cal shear rates. namely, a simple shear flow with the fluid velocilyalong

A linear flow field was chosen as the underlying carrier-the y direction,u=ax; the shear rafetensora has only one
gas velocity field because the stochastic particle equations efonzero elemeni,,=a. The general equation of motion for
motion and the associated Fokker-Planck equation can b& small rigid sphere in a nonuniform flojd3] simplifies
solved exactly for linear flow fields. Thus, the closure prob-considerably for most incompressible gas-particle systems
lem associated with the continuum equations for the dishecause particle density is much greater than fluid density.
persed phase is avoided, and analytic, nonperturbative exccordingly, the pressure gradient force, virtual mass, Basset
pressions may be derived in the long-time litfidr example,  history integral, and Faxen’s modification to Stokes’ drag
for the mean particle velocity The specific case of a simple may be neglected. Moreover, the effect of gravity will be
shear is investigated because Brownian motion in a simpleeglected since gravitational settling becomes significant
shear has been studied extensively; see, for example, Refsnly for very large particlegr,>50 um). The Saffman lift
[5,6,8,9. These analyses have been limited in either perturforce will also be neglected, it being negligible with respect
bative calculationg5,6] or in calculations of the long-time to Stokes drag for small-diameter, low-inertia particles.
behavior of equal-time correlation functions without consid-Therefore, the particle equations of motion in a Lagrangian
erations of the associated convective-diffusion equdt@in description become
The long-time, analytic expressions obtained herein extend
these previous analysdsinder well-specified approxima- do .
tions): for example, the nonperturbative, generalized Smolu- at = Blax—v) +(1), (1)
chowski equation for diffusing, inertial Brownian particles in

a simple shear is derivedee Ref[5]), and analytic expres- \yhere the time derivative is a total derivative following the

sions for the particle-phgse total pressure tensor and the difﬁoving Brownian particle with(t) the particle velocityx(t)
fusion tensor are obtainetsee Ref.[6]). Moreover, the the particle position, anf{t) the random force per unit par-

methqdology pres'ented fpr a S'mP'e.She?‘r may be.used ®le mass. As argued, the friction force is assumed to be the
investigate Brownian motion of finite-inertia particle in any

ther i wo-di ional fi be it i i Stokes drag on the particle. Hence, the friction coefficignt
other linear two-dimensional flow, be it a symmetric or anti-,. o iqverse particle  relaxation ~ time, =1/,

. . is
symmetric(rotationa) shear. =9us/ (2per2,), the particle relaxation time being, the par-

Our approach has much In-common W.'th th? SC).'(x.i“eqicle material density,, the particle radius,, and the fluid
PDF approach used to describe particle dispersion in 'nhodynamic viscosityur. As in the Langevin description of

mogeneous turbylent flows0]. Moreover,. a Lgngevm eaua- gy ownian motion in a quiescent fluid the random force will
tion formally equivalent to the one used in this work has alsqDe taken to be white in time

been used to model turbulenfkl] by considering an anal-
ogy between the action of the dissipating scales of turbulence

and that of the molecular white noise driving force in IStrictly speakinga is the strain rate, but we will follow the
Brownian motion. Hence, the results obtained herein applygtandard practice of referring to it as the shear rate.

II. LAGRANGIAN DESCRIPTION
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t

t
vy ()= f dte?if (ty), y(t) = f dtyoy(ty). (3b)

0 0

HOf))y=qsat-t)  (,j=xy), 2

with zero mean(f;(t))=0 and of an unspecified, at the mo-  The formal solution allows the analytic evaluation of en-
ment, strengthg. Angular bracketg-) denote an ensemble semble averages of products of particle position and velocity,
average over all particle trajectories. two-point correlation functions, in terms of the random-force

The Langevin equations are linear: hence, the particle vestrengthg. Their evaluation requires the calculation of time
locity and position may be solved formally as functionals ofintegrals whose integrands include the causal correlation
the random force. The formal solutions for Brownian par-
ticles injected at the origin with zero initial velocitithe
choice of the initial conditions is not important since we are
interested in the long-time behavjare

(y(Of,(t) = it - t')%[l —e B, (4)

The Heavisided function in the previous equation arises
naturally via the explicit evaluation of the time-dependent
correlation function using Eq$3b); it ensures causality.

In the diffusive limit (t>BY) exponential terms in the
equal-time, two-point correlation functions may be ne-
glected. If only polynomial terms in time are kept, the cor-
(3a) relations evaluate to

t t
vty =e? f dt,®1[ Bay(ty) + f(t)], x(t) = f dtyou(ty),
0 0

N AN E A AT p 2w
(xX(x(t)) = 25 {tz _a, E} of - 3 ’ o
B 2p A

(X)) = 2%2 AL

distribution function is a local Maxwellian distribution, then
the Brownian particles behave as an ideal “particle” gas with
no shear stresses or shear viscosity.

More recently, Santamaria-Hole&t al. [6] derived a
Fokker-Planck equation for the nonequilibrium distribution
function of Brownian particles in stationary flow. They

avoided the use of a Langevin equati@nd the associated
problem of the specification of the statistics of the random
force) by using arguments based on mesoscopic nonequilib-
rium thermodynamics. They found that the flow modifies the
<v(t)v(t)>:2— (5¢)  diffusion tensor in the Fokker-Planck equation by a term
B @ proportional to the imposed velocity gradient. They con-
2B cluded that due to this additional term the fluctuation-
In a quiescent fluid the fluctuation strength is specified bydiSsipation theorem in its classical form does not hold for
invoking the fluctuation-dissipation theorem. Its classicallluctuations about the nonequilibrium steady state. However,
form may be expressed ésee, for example, Reekg4]) they did not_ prqwde an esymate of the rellatlve magnitude of
the nonequilibrium correction to the classical FDSuch an
estimate may be deduced from earlier kinetic theory calcula-
tions of particle motion in a nonuniform light gas. Rodriguez
et al. [8] used Fokker-Planck and Langevin descriptions of
The use of the classical FDT in sheared systems has bedictuations in uniform shear flow to conclude that the diffu-
questioned. Whereas its classical form as shown in(Bx. Sion tensor in the Fokker-Planck equation and the corre-
has been used in the pd&,9,19, it has also been argued sponding properties of the random force in the Langevin
[16] that the fluctuation strength may be determined by the

ad hocrequirement that energy equipartition hold in the lo- 2The estimate provided in Rei27] refers to the complete modi-

cal, comoving referen_ce f_rame. Energy e_quipartition in thesication of the diffusion coefficient due to the shear under condi-
local reference frame implies local equilibrium and hence theions relevant to nucleation experimeniaminar flow diffusion

Brownian velocity distribution function becomes locally cloud chamber and not to the relative magnitude of the
Maxwellian. As we show in Sec. Ill, if the Brownian velocity equilibrium-to-nonequilibrium terms.

2a2[ 11] a
o=+ =
q| B 4B 2B

1

o= - J dfi(9)f;(0)). ©®)

ksTJo
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description are modified by a term proportional to the trace- 1d,, KeT

less part of the fluid pressure tensor. Thus, the nonequilib- Do= Ea(y )= Bm’ (8)
rium modification of the FDT implies that in a Langevin
description the stochastic properties of the random force ar e - L "
modified by the shear flow. However, in a Langevin descrip-ﬁme that the diffusion coefficient is first order ¥, a

tion the time scale of the Brownian white noise driving force result that will be used Iater In Sec. I.V' .
is considered much shorter than the time scale of the im- Th_e shear flow al§0 modlfl_es the time-dependent particle-
velocity autocorrelation functions. Ensemble averages of the

posed flow, suggesting that the nonequilibrium correctior} I soluti £ th i ¢ moti Ve in th
would be of the order of the ratio of the molecular relaxation'0'Ma! SOUtions o _1e equations of motio(® give in the
diffusive limit (t>87"), neglecting terms involving powers

time to the time scale of the imposed shan fact, the
nonequilibrium correction derived by Rodriguet al. [8] of exp(=AY),
can be shown to be proportional to the ratio of the fluid

molecular relaxation time to the time scale of the imposed (v,(t+ Tv(t))

shear(a ratio of a microscopic to a macroscopic time sgale T 1
by expressing thédimensionlesscorrection in terms of the i{e—ﬁu =SP[4pt -8 -e P (Br+ 3)]}
velocity gradient(shear rateand the ratio of the fluid vis- m 2
cosity to the fluid pressure. Similarly, Fernandez de la Mora for 7= 0,
and Mercer[7] used a Chapman-Enskog expansion of the =4 kT 1
light-gas velocity distribution function to show that the non- B lef+ =SE[4B(t+ 7 - 8 +ef(Br-3)]
equilibrium modification of the Fokker-Planck equation is of m 2
the order of the ratio of the light-gas relaxation tims L for 7<0,
~ u¢/p;) to the macroscopic fluid deceleration tirttee in- (9a)
verse shear rateThus, it becomes of the order of the light-
gas Knudsen number and therefore it may be neglected, only
becoming important for rarefied gadé3. Since in this work (vt + Dy (1)
we are interested in cases where time scales are clearly sepa- T 1
rated, in what follows we shall use the classical form of the 215»[[1 - e P (2B + 3)] for 7= 0,
FDT that does not introduce additional random-force corre- _ m 4
lations. T kgT1 :
The classical form of the FDT and E€R) specify the ?53@3 for 7<0,
fluctuation amplitude to be
(9b)
kgT
g = e (@) KgT _
2 m (oy(t+ Do) =2 #7017 (99)

With this identification some of Eq5) have been previously
reported 9], whereas the full time-dependent correlations for

S-function initial conditions are given in Ref5]. Particle and their time dependence. The dependence of the autocor-
velocity correlations along thg direction (in the long-time : ° aep ce. ‘he dep
relation functions on particle inertia and shear rate has been

limit), being independent of the shear flow, satisfy the nor- :
mal equipartition theorem. This is expected since the she gxpressed in terms of the Stokes number, &g The shear

. S How not only breaks spatial symmetry but alsmacro-
flow is only along thex direction, and théx,y) components scopig time reversibility and stationarity: the particle-

S %Iocity autocorrelation function in the streamwise direction
over, a kinetic temperature, as opposed to the thermody-

! ; ) . IS nonstationary. Of course, the velocity correlations perpen-
namic temperaturE n E.qS'.(SC)’ may be defined by relat|_ng dicular to the shear decay exponentially in time as expected
the average particle kinetic energy kaeT,;,. Then, the ki-

netic temperature alond the direction of the shear becom for a Gaussian, stationary Markov process, an Ornstein-
et peratu g the direction Shlenbeck process. The shear-induced modifications of the
time dependent and a function of particle mébsough the

X : autocorrelation functions become more transparent if the
depend(_ance OW) and of properties of the fluid flowthe contribution of the underlying shear flow is subtracted. Spe-
local fluid gradienta).

The long-time limit of the equal time correlatidy?(t)) cifically, the autocorrelation functions of the fluctuating par-

. . : _ ticle velocities with respect to the shear flow(t)=v,(t)
may be used to obtain the Stokes-Einstein expression for th—eay(t), becomel(in the long-time limi}

diffusion coefficient,

Hence, the combined effects of particle inertia and shear flow
modify both the amplitude of the autocorrelation functions

—_ kgT _ 1
*Time-scale separation is also implicit in the separation of the (vy(nvy(0)) = %e Bd{l +5312(,3| 7+ 1)] O,
fluid velocity into a mean part and a fluctuating part, which gives

rise to the random force in the particle equations of motibn (103
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FIG. 1. Time dependence of
the fluctuating particle-velocity
autocorrelation functions in the
diffusive limit, parametrized by
the Stokes number: solid lines are
Cu(7), the dashed lin€,(7), and
the dash-dotted line i€,,(7).

C,B9

Bz
kgT 1 s correlationsC,,(7) andC,(7) are independent of the Stokes
- _ESTE (2p7+1) for7=0, number. Note that with increasing Stokes number the cusp at
(vy(1vy(0)) = the origin, characteristic of the short-time behavioCgf(7),
_kLT}SteﬁT for r< 0 becomes rounded. The St=10 curve is also the value of
m 2 ' C,(7) in the limit the St-~. The velocity autocorrelation

(10b) functions wiII_ be r_econsidered i_n_Sec. IV since they are re-
lated to particle diffusion coefficients through Green-Kubo
relations.

Thus, the autocorrelation functions of the fluctuating particle Reeks[17] in an analysis of particle turbulent dispersion
velocities are stationary and the velocity correlation alongn a shear flow reports equations similar to EGL). It can

the shear is symmetric in the time differengebut the cross be shown that the results of R¢lL7] for the case of fluid-
correlation is nonsymmetric in Since in the local reference point dispersion lead to velocity autocorrelation functions
frame time stationarity is recovered, the dependence of thiglentical to those presented above. Similarly, Eckhardt and
autocorrelation functions onhas been dropped: note, how- Pandit[12] obtained results formally equivalent to ours for
ever, that these expressions are valid only in the long-timéhe effect of shear on fluid velocity fluctuations. Note, how-
limit (Bt>1). The time decay of the velocity correlation €ver, that for the system under consideration the effects of
function along the flow direction is not a pure exponential,{N€ shear flow and particle inertia are described in terms of
but it is modified by an algebraic prefactor; hence, the unihe particle Stokes number: hence, for a given shear rate

derlying stochastic process’(t) is not an Omstein- changes of the Stokes number imply changes of the particle

Uhlenbeck process. Furthermore, since the cross correlatiorr?laxatlon time(i.e., of the particle’s inertia

is stationaryvy(7)v,(0))=(v}(0)vy(-7)), but since it is not IIl. EULERIAN DESCRIPTION

symmetric (v,(7)v,(0)) # (vy(O)vy(7). The time asymmetry  the Eylerian description of the motion b independent

of the cross correlation implies that for a negative time dif-3nd identical Brownian particles in terms of the average

ference7<0 the correlation decays exponentially, whereasphase space densifj(x,v;t) is an alternative to the La-

for =0 the correlation initially increases at short relative grangian description in terms of stochastic differential equa-

times to decrease exponentially at longer time. The maxitions. The Fokker-Planck equation associated with the par-

mum occurs apr=1/2. ticle equations of motior{l) may be derived in numerous
These qualitative observations are summarized in Fig. lways, including the elegant functional derivation of Refs.

where the three correlation functions are compared. The nof418,19. It becomes

malized(at the origin) autocorrelation functions are plotted, P P kT &

Cij(7)=(v{ (1)v](0))/(v{(0)v(0)), as functions of time ren- —P+—-(wP)-B— - [(v-u)P]= ,BL—ZP, (11

dered dimensionless by g scaling. The autocorrelation X v m Jv

along the streamwise directidly,(t) has been parametrized where the fluctuation amplitude, defined in Eg), was used.

by three values of Stokes number; the other two normalized’he probability density functiof is normalized on the total
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number of particles. As mentioned before, Efjl) differs dv 1 -

from the Fokker-Planck equation derived by Santamaria- a:ﬁ(u—a—zv Pp, (16)
Holek et al.[6] in the diffusive term since we used the clas-

sical FDT.

The probability density functiof® is used to define aver- whereP, is the unspe(ﬂfied, pariicle-phase total pressure ten-

age quantities. In particular, the mean, local particle velocitySOr. Comparison yieldB,=pv'v’. Itis easy to shoyvia Eq.
a quantity defined as in kinetic theory of ga$@a], is (14)] that the expression for the particle-phase pressure ten-
sor is identical to the pressure tensor as defined in kinetic

p(X;o(x;t) =m f dvP(x,v;t)v = m{nv), (12 itg‘se‘[)g[ZO] or in mesoscopic nonequilibrium thermodynam-

with n the “instantaneous” particle number density and - .
p(x;t) the local, average particle mass density, Pp= mf dv(v-v)(v -v)P(X,v;t). a7
p(x;t) = mf dvP(x,v:1). (13) ~ Itis apparent from the previous discussion that the con-
tinuum equations and the identification of the particle-phase

pressure tensor with the particle covariances only require that
fined with respect to the mean particle veloéiw,ill be de- the fa.”dom forcg he white in time. T_hus, the previous ex-
noted by’ =v-o. pressions are valid for a general flow field and not only for a

' VJ'Wear flow field (as long as the random force is whitén

These local averages, denoted by an overbar and kno It follows we restrict th lculation to a linear flow field
as density-weighted averages in two-fluid descriptions of dis- at foflows we restrict tne calculation to a finear riow neid,
ventually evaluating average quantitidsr example, the

persed flows, are averages with respect to a local, proper . . .
normalized velocity probability density distribution &ean part|cl_e_ velocity and _the particle-phase pressure tensor
for the specific case of a simple shear flow, as discussed and

The fluctuating component of the particle velocity field, de-

P(x,v:t) justified in the Introduction.
pxot)=———. (14 For a linear flow field the Fokker-Planck equation defines
J dvP(x,v;t) a Gaussian process f¢k,v] and thus it has an analytic
solution; see, for example, Refd.8,21]. The Gaussian solu-
The integral ofy over particle velocities is, thus, unity. tion may be used to evaluate explicitly the density-weighted

The appropriate equations to describe particle dispersiofghsemble averages; Swailes and Darbysf2dd report the
also known as “continuum” or “hydrodynamic” equationS, analytic eXpreSSionS. For Brownian partiCleS injected at the
are obtained by taking velocity moments of the Fokker-0rigin of the coordinate system with zero initial velocity the
Planck equation. In particular, the particle mass conservatiofiPatially dependent particle concentration(Ref. [21] pre-
equation is obtained by mu|t|p|y|ng Eq:]_]_) by m, integrat_ sents the analytic solutions for arbitrary initial conditi))ns
ing over particle velocities, and using Ed.3). Multiplying
the Fokker-Planck equation bynv’ and realizing that x:t) = 1 exp{— }XT )7L x}
m{nv'v’)=pv'v’ [see the definition E¢14)] gives the mo- 7 2a]det(xx)) ]2 2 ’
mentum conservation equation. Accordingly, they become (18)
(see alsq18))

the mean particle velocity

d _
=PV T (159
! v(x;t) = (@X) - 007X, (19
dv lo  — and the particle-velocity covariances
Gt AU (o), (150 P d

[ — -1
where the total derivatived/dt=d/dt+v-V describes v'v’() = (0w~ {ox) - 007 xw), (20
changes with respect to the mean particle velocity, and thghere the superscript in E6L8) denotes transpose. Thus, for
dot denotes matrix multiplication. Equatiofs5) are a spe-  he Gaussian process the mean particle velocity is lineey in
cial case for a white noise random force of the general conang the particle covariances are spatially independent. Ana-
tinuum equations for the dispersed phase in mhomogeneoqt;tic expressions for the long-time behavior of the mean par-
flows derived by Reekg10]. ticle velocity and its approach to the steady-state vélbe

The momentum equation E¢L5h) may be compared to  c4prier flow velocity are presented in the Appendix. For
the momentum equation that expresses momentum balanggmpleteness note that explicit evaluation of the necessary
in the particulate phas@2,23: correlation functions in the long-time limit shows that
lim;_..v"v"=((v-u)? since lim__(v)=u.

“Primed variables refer to fluctuating velocities with respect to the  The long-time particle-phase pressure tensor may then be
mean particle velocity, whereas double-primed variables are define@valuated using Eq$5) and(20): expressed as a function of
with respect to the carrier fluid velocity; see E¢0). the Stokes number, it becomes
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- kg T S\~ St/0 1\ Sf/1 0 particle-phase pressure tendar the long-time limi} con-
Po=p - (1 +T> “S\1 0/ 2 \0 =1/ tracts to the ideal gas resuﬁgeq'=p(x;t)kBTI/m; i.e., there
(21) is no viscous shearing.

Equation (21) along with Egs.(15) is our main result.
The particle pressure tensor has been decomposed intoTéese equations are analytic, nonperturbative expressions
form reminiscent of the pressure tensor of a simple liquidthat describe the long-time behavior of the dispersed phase:
undergoing laminar plane Couette flg@]. The first term is  they incorporate the effects of the flow field and the com-
isotropic and proportional to the identity tensor; the otherbined effects of particle diffusion and particle inertia on the
two terms constitute what has been calléd] the “friction  particle-phase total pressure tensor. However, the momentum
pressure tensor’The first part of the isotropic term gives equation is coupled to the mass conservation equation. The
the ideal gas pressure of a collection of Brownian particlegwo (steady-stateequations are, usually, decoupled by per-
(“Brownian-particle gasj, a result that has been previously forming a low-Stokes-number expansion of the momentum
postulated on phenomenological argumei®gl]. The ideal equation to obtain a perturbative expression for the mean
gas pressure is modified by a correction dependent on thearticle velocity field in terms of the fluid velocity and its
Stokes number. The other terms, usually neglected, arisgradients4]. Substitution of the resulting mean particle ve-
from the particle viscous stresses. The second term is prdecity into the particle mass conservation equation then gives
portional to the symmetric rate-of-strain fluid tensoE 2 the associated convective-diffusion equafi8h For the case

:V*m(V*J)T_ Thus, the(negative proportionality constant of a simple ;hear this .procedure leads to a gene.rali.zed
defines the shear viscosity of the particle phase to be Smoluchowski equatiofisince the local average density is
defined as an integral of the average phase-space déhsity

shear._ Eq. (13)], as we show in the following section.

1
7= > Dop. (22
IV. SMOLUCHOWSKI EQUATION

Hence, the Brownian shear viscosity, being independent of
the shear rate, is a conventional Newtonian viscosity. A
alternative expression for Eq22) is that the particle
Schmidt number, the ratio of momentum diffusivity to mass
diffusivity, is Sq):(nf)hear/p)/Do:llz, as is thease for par-
ticle motion in a turbulent flow in which the particle re-
sponse time is much larger than the turbulent time ddalg
The third term, which is absent in Newtonian fluids, shows
that the particle phase exhibits non-Newtonian rheology, as ap

has been remarked for sheared simple liqyi2i24]. Note px == (xx) X (23
that the last term, as well as the correction to the ideal gas

pressure, is second order in the Stokes number. Hence which substituted into the equation for the mean-particle-
leading order in St the viscous part of the particle pressur&elocity equatior(19) expresses the particle mean velocity in
tensor is traceless, and the particle phase behaves as a Neéigtms of the density gradient:

tonian fluid. Non-Newtonian behavior becomes evident only

The momentum equatiofll5h), an equation valid for a
ngeneral flow field and a white random force, may be rear-
ranged to obtain an explicit expression for the total time
derivative of the mean-particle-velocity fieldiso referred to

as the inertial acceleration teynfor the specific case of a
simple shear differentiation of the analytic, time-dependent
expression for the particle concentration Etg) leads to

to second order. Moreover, according to Eg1) [and Eq. v=—(vX)- 1@, (24)
(8)] in the absence of diffusion, for sufficiently massive par- p X
ticles, P,=0. Moreover, a variant of Eq(23), obtained by multiplying it

As remarked in Sec. Il if local equilibrium is issumed, as,by the shear-rate tensar, determines the carrier flow veloc-
for example, in Ref.[16], ((v-u)(v-u))2kgT1/m, the ity
Brownian particle distribution becomes locally Maxwellian.
Then, from Eqgs(5¢) the fluctuation strengths can be calcu- pu=—(ux) -
lated to form a symmetric tensor dependent on the shear rate.
As extensively argued in Sec. Il the dependence of the flucEquations(24) and (25), derived from the time-dependent
tuation strengths on the shear rate implies that the externallyolution for the local particle density, are generally valid for
imposed shear modifies the properties of the random force, & simple shear and not only in the long-time limit. Their
condition that is unlikely to hold when the relevant time substitution into the momentum equati¢tbb), along with
scales (inverse shear rate and molecular relaxation timethe realization that for a linear flow fiel@nd, in particular, a

scalg are clearly separated. Moreover, for a local equilib-simple shegrthe velocity covariances are spatially indepen-
rium assumption a similar calculation shows that thedent, leads to

%» (25)

- v —— p e Ip
%If the momentum equation had been expressed in terms of the Pt [Bo-wx)-v'v']-—&EM-—. (26)

= X oX
total particle-phase stress tensor, the negativeoés defined by
Eg. (16), then these terms would constitute the deviatoric particleHence, the inertial acceleration term in a simple shear may
stress tensor. be explicitly evaluated: specifically, Eq®) along with Egs.
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(7) and (20) provide analytic expressions for the necessary dp +p
correlations(in the diffusive limid. Their substitution into at V- (pu) =((v —u)x) - Pl (31)
Eq. (26) yields
Equation(31) defines the diffusion tens@®=(v"x) that de-
G = kLTS(<_ 2St - 1) (27  Pends on both particle inertia and the shear rate through the
m 1 0/ Stokes number. In the long-time limit it is given by the sec-

ond term on the right-hand sid®HS) of Eq. (30). Note that
the diffusion tensor, as well as the matrix expression for the

g?(;jlfésthnirg[)oepr(')rsmlco)tr:aallﬁl)gleﬁ/r:\‘/tgr)Mtr:zt c;:‘)rthae S?rr:;l; c;fhg;? thienertial acceleration term, E@R27), is not symmetric, reflect-
convective derivatives of the flow fieldu- V)u] vanish. In g the symmetry-breaking effect of the imposed shear.

. . : . herefore, the long-time generalized Smoluchowski equation
this respect the simple shear differs from the symmetric an g 9 d

. . . i ecomes
antisymmetric shear, the other possible representations of a

gen_eral Mo-dimensiqnal linear flow field. Equati(ih?)_for ap ap _ 3 @ Pp @
the inertial acceleration term and E@1) for the particle- + ay& =Dg| 1 - 28t2 P DOSt—a +Do—.
phase pressure tensor were derived for the specific case of a X X xdy %

simple shear. Hence, they may be substituted into the gen- (32

eral, particulate-phase, momentum-conservation equation. o . _ ) o
Eq. (16) or, equivalently, into Eq(15b), rewritten as Since the inertial acceleration term is antisymmetric, it only
’ ' ’ modifies the diffusion coefficient in the streamwise direction;

— the modification is second order in the Stokes number. The
T=Uu-—V .-P.— -= (29) first_-orqler correctipn through the appearance of the cross-
derivative term arises solely from the viscous part of the
particle pressure tensor. The same first-order correction to
to obtain the analytic, nonperturbative expression for théhe Smoluchowski equation was derived by Subramanian

mean-particle-velocity field in the diffusive limit> g1): and Brgdy[S], who, however, did not calculate higher-order
corrections.
1op The sign of the long-time diffusion coefficient along the
v=u—-{(v-ux) -—— (29 flow direction, D,y in Eq. (32), depends on the value of the
p X shear rate. For large shear rates it becomes negative, the

critical Stokes number being St2/3. The long-time limit
of the off-diagonal diffusion coefficients is such tHay, is
B=>1 - 3 1dp always positive, whereab,, is always negativgSee Eq.
oll 5o (300 (30)]. The other diffusion coefficierd,, is always positive.
p The dependence of the diffusion coefficient on particle iner-
tia (via the Stokes numbgis shown in Fig. 2.

Note that Eq.(29) may also be derived by a judicious com- The existence of negative diffusion coefficients does not
bination of Eqs.(24) and (25) as can be seen by expanding violate any stability conditions since the coefficients that ap-
the ensemble averagév—u)x). The alternative derivation pear in the convective-diffusion equation refer to the particle

presented earlier, however, is more instructive because it afi_lfoSIVG flux with respect to Fhe underlying carrier flo_vv. As
lows the identification of the contribution of the particle- expected from general stability arguments the total diffusive

phase pressure tensor and the inertial acceleration to the dHHX defined with respect to a fixed reference frame, and not
fusion coefficient. as discussed in what follows with respect to the carrier flow, is always positive. The mean

; . ; - Y particle velocity expressed in terms of the density gradient,
me-lf; Izzcri;ir;?eo\r/giaorcli?yt?: t%irtlﬂcllﬁ driﬁ)i?tgnnt:ﬁﬁg dthb(; a Eq. (24), defines the total diffusion coefficients, which in the

diffusion term(Fick diffusion). Fick diffusion stems from the diffusive, long-time limit become

ideal part of the particle-phase pressure tensor. The correc- 1+a%2 2at

tion to Fick’s law arises from the inertial acceleration and the -

particle viscous stresses. In fact, the contribution of the iner- Dit=(wx)=Dg| « 1] (33
tial acceleration term in E28) is of the same order as the B

contribution from the particle-phase viscous stresses. Either o o

contribution to the mean-particle velocity is at least secondl herefore, the total diffusion tensor is time dependent, non-

order inB ! [see, also, Eq8)]. Hence, in a simple shear itis Symmetric, the corresponding matrix positive definite, and its

inconsistent to retain particle viscous stresses and negleéPmponents are always positive, thereby assuring the stabil-
inertial acceleration and vice versa. ity of the system. The shear-induced modification of the total

The convective-diffusion equatioSBmoluchowski equa- diffusion coefficients, in particular the quadratic time depen-
tion) associated with the two coupled equatidis) is ob- ~ dence of the streamwise diffusion coefficient, has been noted

tained by substituting the mean-particle-velocity equationpefore—for example, in Ref§2,9,15. Note that the sym-
(29 into the mass conservation equation to obtain metric part of Dy, gives the total diffusion coefficients as
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1.5 T T

FIG. 2. Dependence of the
long-time diffusion coefficients on
particle inertia expressed in terms
of the Stokes number. The compo-
nents Dy, (dash-dotted line and
Dy, (dotted ling are always posi-
tive, Dy, (dashed ling always
negative, whereas the sign Df
(solid line) changes as a function
of the Stokes number.

St=o/p

determined from the rate of change of the particle meanthe particle-phase viscous stresses have to be treated consis-
square displacement. tently. In particular, we argued that in perturbative evalua-

The long-time diffusion coefficients may also be obtainedtions of, for example, the Brownian particle diffusive flux in
from the velocity autocorrelation functions presented in Seca simple shear, it is inconsistent to retain the particle-phase
Il. The following Green-Kubo relations, also known as Tay- Viscous stresses and neglect inertial acceleration and vice
lor's diffusion formulas for diffusion via continuous move- Versa. Previous studies differ from ours in the way these two
ments in theories of turbulent particle dispersion, express thterms (P, and dv/dt) are treatedand to a lesser degree in
diffusion coefficients in terms of the velocity autocorrelation the choice of the underlying flow field
functions: Specifically, Fernandez de la Mora and Rogdéiconsid-

. ered the effect of ir?ertia cl)n ?jiffl;]sional ddeposition for a gen-
< eral flow field. They solved the steady-state momentum
D() = @"(O)x(1) = L dt (0" (Do (ty)). (34 equation, Eq(28), to )I/eading order i34, Izleeping only the
ideal-gas part on and the leading-order contribution from
In the diffusive limit they become the inertial acceleration terfi3~*(u-V)u]. For a general
" flow field this is a consistent approximation: higher-order
== ; " corrections would require an expression for the particle vis-
D= f dty tlm[(v Oot=t)], (35) cous stresses. For aqsimple she%r their result reguces to ours
to the same orddw=u-D,VIn p+0O(37?)] since, as noted
expressions that reproduce the diffusion tensor(B@).[see, earlier, the convective derivatives of the flow field vanish in
also, Eq.(A5)]. a simple shear.

Equation(35), in addition to providing the long-time dif- Ramshaw| 3] also analyzed Brownian motion in a general
fusion coefficients in terms of velocity autocorrelations, al-flow field, but his analysis differs from ours in that particles
lows a physical interpretation of the negative diffusion coef-of negligible inertia were considered. He developed a leading
ficients. Specifically, the long-time limit ob,, is always order in8™* expansion, neglecting both viscous stresses and
negative because a particle crossing the mean shear flowertial acceleration, but keeping other forces—e.g., thermo-
with positive v, will have negative streamwise fluctuations phoresis. Ramsha{®5] extended the original derivation to
(as the mean flow increases wigh. Along the streamwise include phenomenologically viscous stresses in the particle
directionD,, becomes negative for large shear rates becaussnd mixture(particle and fluidlmomentum equations, retain-
streamwise fluctuations;=v,—ay become negative for ing, however, the assumption of negligible particle inertia.
large values of the shear rate(for v,>0). He found that inclusion of viscous stresses in the mixture

The results presented in this section may be criticallyequation and evaluation of the suspension viscosity by Ein-
compared to earlier analyses of diffusive motion in nonuni-stein’s formula leads to an additional term in the diffusion
form flows. We showed, via the derivation of analytic, long- tensor proportional to the particle-phase volume fraction.
time expressions, that in a simple shear the inertial acceler&ur calculation considers an infinitely dilute suspension, and
tion term (total derivative of the mean particle velogditgnd  hence this additional term is absent from E20). Moreover,

0
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his calculation shows that inclusion of viscous stresses onlynean particle velocity and particle-velocity correlations.
in the particle-phase momentum equation does not modifyrhese analytic solutions depend on equal-time ensemble av-
the diffusion coefficient if the particle shear viscosity is erages that were determined from the formal solutions of the
evaluated as if the particles were an ideal ¢asd, hence, Langevin equations for particle motion. The classical form of

the shear Viscosity is independent of the partide mass deﬁhe fluctuation-dissipation theorem was used to determine the
sity). strength of the random force correlations, neglecting correc-

The analysis of Santamaria-Holek al. [6], who consid- tions of the order of the ratio of the fluid molecular relax-
ered diffusion in a simple shear as in this work, differs from@tion time to the time scale of the imposed shear. We showed
ours primarily in the use of the nonequilibrium Fas sum-  that the long-time, time-dependent particle-velocity autocor-
marized in Sec. Il Moreover, the diffusion tensor was relation along the streamwise direction is nonstationary. The

evaluated perturbatively in the particle relaxation tigse?), fluctuating velocity autocorrelations were determined to be

o : : stationary in time, but the cross correlation was nonsymmet-
retaining the viscous part of the particle-phase pressure tehic in the time difference, reflecting the combined effect of

sor and neglecting the contribution from the inertial accel-

| h i hen the classical f ; hé:)article inertia and shear on particle-velocity fluctuations.
eration term. As shown earlier, when the classical form of theé " \ye ysed the analytic solution of the Fokker-Planck equa-

FDT is used these two terms contribute to the same ordefon in conjunction with its first two-velocity-moment equa-

(87?) in the perturbation expansion. However, the resulting,tions’ to obtair[in the diffusive limit (t> Y] the general-
leading-order correction to the Smoluchowski equation i§zed convective-diffusion equation (generalized
identical to ourup to the nonequilibrium modificatiorbe-  Smoluchowski equatiorthat incorporates inertial effects on
cause the inertial acceleratidipeing antisymmetriccontrib-  diffusional transport for dilute suspensions. The coupling of
utes only to the highest order. A similar remark applies to theparticle inertia to the fluid flow introduces a shear-dependent,
leading-order correction to the Smoluchowski equation delinear in (particle Stokes number, cross-derivative term and
rived by Subramanian and Braffy] (who neglected the non- an additional term along the streamwise direction, quadratic
equilibrium modification, as in this woyk in the Stokes number. The associated diffusion tensor, thus,
depends on the shear rate and particle inertia; the diffusion
coefficient along the streamwise direction flow was found to
V. CONCLUSIONS become negative for large particle relaxation tim@s,
The primary question addressed in this work is how par€guivalently, for large shear rajesvhereas one of the cross-
ticle inertia modifies diffusional transport of particles in a diffusion coefficient was determined to be always negative,

nonuniform flow. The usual convective-diffusion equationthe other two being always positive. We argued that stability

describes diffusional transport in the limit where the particlesgg;g'st'(?]g‘:’ t?]r(?sgc\):/i;wlorlztseicstlTgethtgiz;crjrtizlr ?Ig:hsé?%gg?ﬁ"
follow the fluid stream lines. It is an Eulerian continuum P

equation that provides a computationally efficient method t sure the rate of change of particle mean-square displacement

! - . ere determined to be always positive.
calculate particle transpofand depositioyy however, iner- We showed that in a simple shear and in the long-time

tial effects are neglected. Inertial transport, where particlginit the contribution of the inertial acceleration term to the
trajectories deviate considerably from the fluid stream linesg;tf,sion tensor in the generalized Smoluchowski equation is
is best calculated via a Lagrangian description in terms of thef the same order in the Stokes number as that of the viscous
particle equations of motion. Diffusive particle motion may part of the particle-phase pressure tensor. Thus, in perturba-
be incorporated in the Lagrangian formulation through theiive evaluations of, for example, the Brownian particle dif-
addition of a random force, but the numerical solution of thefusive flux, it is inconsistent to retain the particle-phase vis-
resulting stochastic differential equations is computationallycous stresses and neglect the inertial acceleration term and
intensive. It is, thus, desirable to derive a continuum equavice versa.
tion valid in the transition regime between the diffusion limit ~ As part of the derivation of the Smoluchowski equation
and the inertia-dominated limit, incorporating both particle-we calculated the particle-phase total pressure tensor that
transport mechanisms. was determined to be second order in the Stokes number.
We considered the coupled diffusive and inertial motionSimilar to the pressure tensor of simple sheared liquids, the
of noninteracting Brownian particles in a simple inhomoge-pressure tensor was decomposed into three parts: a part pro-
neous fluid flow, a simple shear flow. The long-time, diffu- portional to the identity tensor that gives the ideal pressure of
sive, behavior of the system was investigated neglecting tha gas of Brownian particle with an additional term due to
short-time regime. Even though the choice of a simple shegparticle inertia, and two terms that arise from the particle
as the underlying carrier flow is restrictiyfor example, the viscous stresses. We found that the particle phase has a con-
convective derivatives of the flow vanisty-V)u=0, a con-  ventional shear viscosity, but it behaves as a non-Newtonian
dition that does not hold for a symmetric or antisymmetricfluid if second-order effects in the Stokes number are con-
sheal the choice was motivated by numerous previous in-sidered.
vestigations of Brownian motion in such a flow. More im-  These results will be extended to other two-dimensional
portantly, the Fokker-Planck equation associated with thdinear flows in future work.
particle equations of motion in a linear flow field is of the
linear type[8] and, hence, analytically solvable. The solution ACKNOWLEDGMENTS
of the Fokker-Planck equation was used to obtain analytic Y.D. acknowledges partial financial support from the Eu-
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APPENDIX: APPROACH TO THE STEADY STATE &logp 1 m 3y - 3) (A33)
The time-dependent, equal-time correlation functions in X SthT Ia
conjunction with Eq.(19) [or Eq.(24)] may be used to cal-
culate the approach of the mean particle velocity to its dlogp 2y -
steady-state value. The required calculations were performed ay T Dt +0(t™), (A3b)
with MATHEMATICA [26]. Accordingly, the mean particle ve- - 0 o _ _
locity approaches the carrier fluid velocity as follows: shows that the explicit time derivative vanishes in the long-
3 o 3 3 time limit (to leading order int™) to give p(v-V)v
lim v, = ay(l - —) [ X y<1 ——sﬁ)}rh o(t™), =M -dpldx. Hence, the leading-order contribution to the total
to Bt 2,3 @ derivative does not arise from the explicit time derivative.
(Ala) For completeness we also present the approach to steady-
state values of the particle-velocity covariances
2y 3( St > . } —— _ keT 9
lim vy === - = x+ Zy|t72+O(t™3). Alb im oo ———
lim vy = P >y (t™) (Alb) m vgUy = 1458 2 > 2m) | (Ada)
Note that the long-time limit and the vanishing shear-rate T 6
limit do not commute since lim v,0, =~ LS<1 ——), (A4Db)
t—o 2 Bt
X 3y 2 19
Iim(limuovy)=—(1+ —\|1l-—-"———
too a0 2t 2,8t 4 36t 12(Bt)? —  kgT 2
lim vy =——(1-—]. (Adc)
+0(a?), (A2a) t—o0 m Bt

The evaluation of the streamwise diffusion coefficiBgj

3 X 2 5 i - i i i
lim (1im ;) = 1(1 +_> B _[1 L ]a +0(e?). via the Green-Kubo relation85) requires the nonstationary
oo @m0 2t Bt 4 Bt 4A(BY)? correlation function
A2b kgT 2 1
(A2b) (v (t=7y)) =2—— B [(t -7 - —e_BT) for 7= 0.
The zeroth-order terms of Eq8A2) give the mean particle B 4B
velocity of Brownian particles in a quiescent fluid. (A5)
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